
 
 
 
 
 
 
 
 

EXAMINING SPATIOTEMPORAL TRENDS OF DROUGHT IN THE CONTERMINOUS 
UNITED STATES USING SELF-ORGANIZING MAPS 

 
 
 
 
 
 

A Thesis 
by 

MARIA C. MORENO 
 
 
 
 
 

Submitted to the School of Graduate Studies 
at Appalachian State University 

in partial fulfillment of the requirements for the degree of 
MASTER OF ARTS 

 
 
 
 
 
 
 
 

     May 2021  
Department of Geography and Planning 



 
 

EXAMINING SPATIOTEMPORAL TRENDS OF DROUGHT IN THE CONTERMINOUS 
UNITED STATES USING SELF-ORGANIZING MAPS 

 
 
 
 
 

A Thesis 
by 

MARIA C. MORENO 
May 2021 

 
 
 
 

APPROVED BY: 
 

 
        
Margaret M. Sugg 
Chairperson, Thesis Committee 
 
 
        
Johnathan W. Sugg 
Member, Thesis Committee 
 
 
        
Baker L. Perry 
Member, Thesis Committee 
 
 
        
Saskia van de Gevel 
Chairperson, Department of Geography and Planning 
 
 
        
Mike McKenzie, Ph.D. 
Dean, Cratis D. Williams School of Graduate Studies 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Maria C. Moreno 2021 
  All Rights Reserved 



iv  

 
 
 
 
 
 

Abstract 
 

EXAMINING SPATIOTEMPORAL TRENDS OF DROUGHT IN THE 
CONTERMINOUS UNITED STATES USING SELF-ORGANIZING MAPS 

 
Maria Moreno 

B.A., Appalachian State University 
M.A., Appalachian State University 

 
 

Chairperson: Margaret M. Sugg 
 

 
Droughts are a natural, recurrent climate extreme that can inflict long-

lasting devastation on natural ecosystems and socio-economic sectors. Unlike other 

natural hazards, drought onset is insidious and often affects a greater spatial extent 

and prolonged temporal scale. The evolution of drought and its impacts are 

typically region specific; the West and Southwest U.S. have experienced severe 

droughts at a higher frequency than the East and parts of the Midwest. While these 

regions do experience drought, intensified precipitation variability also obscures 

how drought may be changing in these locations. To better understand these trends, 

we examine the spatiotemporal trends of drought using self-organizing maps 

(SOM). SOMs are a novel, competitive learning subset of artificial neural networks 

(ANN), requiring unsupervised training of inputs. We introduced monthly Palmer 

Drought Severity Index (PDSI) values to the SOM to identify existing clusters of 

wetting and drying patterns from 1895-2016. After training, we created 

cartographic visualizations of the SOM output and conducted a subsequent time-
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series analysis to link with our spatial observations. Our results concur with other 

observed trends which identify no significant increase in drought over the last 

century. Over the last 40 years, we observed increased precipitation in the 

Northeast, Midwest, and upper Great Plains across several nodes. Of particular 

interest, we noted a statistically significant increase in drought patterns in 

Southwestern and Western U.S. over the study period. These findings further 

support the notion that drought is region-specific and may manifest in certain 

regions more severely. 
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Introduction 
 

Droughts are one of the costliest natural hazards; over the last 40 years, 26 droughts 

have cost at least $249 billion USD in the United States, averaging about $9 billion of annual 

loss in damages per event (NIDIS, 2020). Despite this, drought events are not easily 

quantified; on a global scale, there is much debate on whether drought frequency and severity 

has increased, and more contention prevails regarding the extent of anthropogenic forcing’s 

on drought (IPCC, 2014; Trenberth et al. 2014). Unlike other natural hazards, drought onset 

is insidious and often affects a greater spatial extent and prolonged temporal scale. In 

accordance, continuous direct observations of drought are necessary to understand how 

projected increasing temperature and shifting precipitation trends will influence drought’s 

natural variability. 

While there is broad agreement that temperature and precipitation variability have 

increased over the latter half of the 20th century, the regional effects of these trends on 

evaporative demand are less understood (Easterling et al. 2007; Trenberth et al. 2014). In the 

United States, the spatiotemporal variations of drought differ geographically due to climate 

forcing’s unique regional characteristics (Ficklin et al. 2015). In the U.S., the West has seen a 

greater frequency and severity of droughts, while a great majority of the country including 

the East and parts of the Midwest, have seen intensified precipitation variability. Data 

inconsistencies due to limited availability or access to high quality long-term precipitation 

data, varying baseline periods, and techniques have amplified the uncertainties in our 

understanding of climate extremes such as drought (Alexander 2016; Trenberth et al. 2014).  

Consequently, as droughts are expected to increase in frequency and severity, the 

current body of literature seeks to better understand climate forcing’s, or the internal regional 
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variability that drive anomalous drying or wetting trends. To our knowledge, there is no other 

study that examines the spatiotemporal trends of drought using self-organizing maps (SOM). 

SOM’s have been an exceptionally useful tool in meteorological and atmospheric research 

(Hewitson and Crane 2002; Skific and Francis 2012; Sheridan and Lee 2011; Sugg and 

Konrad 2017). The objective of this study is to observe the general trends of drought of the 

conterminous United States (CONUS), identify anomalous drying or wetting patterns, and 

assess how they have changed over time across different regions. Results documented here 

will inform future studies exploring drought trends by providing a new way to examine 

geographic patterns associated with meteorological drought over the last century. 
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Abstract 
 

Droughts are a natural, recurrent climate extreme that can inflict long-lasting 

devastation on natural ecosystems and socio-economic sectors. Unlike other natural 

hazards, drought onset is insidious and often affects a greater spatial extent and prolonged 

temporal scale. The evolution of drought and its impacts are typically region specific; the 

West and Southwest U.S. have experienced severe droughts at a higher frequency than the 

East and parts of the Midwest. While these regions do experience drought, intensified 

precipitation variability also obscures how drought may be changing in these locations. To 

better understand these trends, we examine the spatiotemporal trends of drought using self-

organizing maps (SOM). SOMs are a novel, competitive learning subset of artificial neural 

networks (ANN), requiring unsupervised training of inputs. We introduced monthly 

Palmer Drought Severity Index (PDSI) values to the SOM to identify existing clusters of 

wetting and drying patterns from 1895-2016. After training, we created cartographic 

visualizations of the SOM output and conducted a subsequent time-series analysis to link 

with our spatial observations. Our results concur with other observed trends which identify 

no significant increase in drought over the last century. Over the last 40 years, we 

observed increased precipitation in the Northeast, Midwest, and upper Great Plains across 

several nodes. Of particular interest, we noted a statistically significant increase in drought 

patterns in Southwestern and Western U.S. over the study period. These findings further 

support the notion that drought is region-specific and may manifest in certain regions more 

severely. 
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Introduction 
 

Droughts are a natural, recurrent climate extreme that can inflict long-lasting 

devastation on natural ecosystems and socio-economic sectors.  Droughts are one of the 

costliest natural hazards; over the last 40 years, 26 droughts have cost at least $249 billion 

USD in the United States, averaging about $9 billion of annual loss in damages per event 

(Smith, 2020). Despite this, drought events are not easily quantified; on a global scale, there 

is much debate on whether drought frequency and severity has increased, and even more 

uncertainty regarding the extent of anthropogenic forcing’s on drought exists (IPCC, 2014; 

Trenberth et al. 2014).  

Uncertainties concerning drought in the CONUS are ongoing as scientific consensus 

of regional drought trends in the United States is lacking. Regions characterized as naturally 

dry, such as the Southwest, have experienced increased persistence of droughts, and naturally 

wet regions have experienced increased precipitation variability, i.e., increased intensity 

when it rains (Andreadis and Lettenmaier 2006; Groisman et al. 2004, 2008; Li, et al. 2013). 

While there is broad agreement that temperature and precipitation variability have increased 

over the latter half of the 20th century, the regional effects of these trends on evaporative 

demand are less understood (Easterling et al. 2007; Trenberth et al. 2014). Accordingly, 

continuous direct observations of drought are necessary to understand how projected 

increasing temperature and shifting precipitation trends will influence drought’s natural 

variability. 

  The pervasiveness of drought negatively impacts a wide variety of sectors, including 

agriculture, energy, ecosystem viability, and public health (Crausbay et al. 2017; Sugg et al. 

2020; Vicente-Serrano et al. 2020). Drought is understood to have occurred when there is a 
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deficit or total absence of precipitation over a prolonged period (IPCC, 2007). However, 

unlike other natural hazards, drought onset is insidious and often affects a greater spatial 

extent and prolonged temporal scale. Droughts can be described in many ways and are 

typically characterized by their impacts, which largely drives how they are framed. 

Meteorological drought is the most common or ‘quantifiable’ form of drought, which 

describes atmospheric conditions that lead to a reduced or complete absence of precipitation 

(Heim, 2002). Plant available water shortages resulting from prolonged drought eventually 

lead to what is known as agricultural drought, where crop yields are significantly depleted 

per reduced soil moisture (Heim, 2002). Much like agricultural drought, hydrological 

drought becomes evident when sustained low levels of precipitation begin to reduce 

streamflow, groundwater supply, reservoir availability, and lake levels (Heim, 2002). 

Socioeconomic drought encompasses the relationship between the supply of an economic 

good that cannot meet societal demands due to the impacts of meteorological, agricultural, 

and hydrological drought (Heim, 2002). According to the National Oceanic and Atmospheric 

Administration (NOAA), these are the four universally recognized drought types; however, 

there has been a recent push to ‘redefine drought’ to capture the ecological dimensions of 

drought (Crausbay et al. 2017). With an emphasis on the human-nature relationship, 

Crausbay et al. 2017 defines ecological drought as “an episodic deficit in water availability 

that drives ecosystems beyond thresholds of vulnerability, impacts ecosystem services and 

triggers feedback in natural and/or human systems.” Unlike other drought definitions, 

ecological drought attempts to encapsulate the complexity of drought; however, 

quantification of such relationships remains complex and becomes increasingly difficult to 

capture without a comprehensive drought index.  
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Background 

State of the drought literature  

The diversity of drought definitions has prompted the development of more than 

150 drought indices for drought characterization, monitoring, and analysis (Zargar et al. 

2011). Many early indices are specific to one region or application, thus are inadequate for 

capturing geographical differences of drought (Heim, 2002). One of the most widely used 

drought indices is the Palmer Drought Severity Index (PDSI), developed in 1965, based on 

the water-balance model. Other popular drought metrics include the Standardized 

Precipitation Index (SPI), which only considers precipitation. As an extension of SPI, the 

Standardized Precipitation Evapotranspiration Index (SPEI) was developed by Vicente 

Serrano et al. (2010) to account for the effect of temperature on potential 

evapotranspiration (PET). Most indices are better applied to specific regions and smaller 

temporal scales, but there is not one drought metric that captures the full scope of drought. 

The consequences of these varying drought metrics make the quantification of drought 

challenging and inherently subjective.  Depending on the chosen drought index, the 

emphasis placed on the relative roles of precipitation, evapotranspiration, and available 

water content vary, thus can change the interpretation of observed drought trends 

(Trenberth et al. 2014).  

Tree-ring reconstructions of drought have revealed that the United States has 

experienced recurrent megadroughts (severe drought lasting longer than two decades) over 

the last 1000 years, although this type of drought has not yet been documented in the 20th 

century (Cook et al. 2007). Other notable droughts include the most severe since 1700, the 

1930’s Dust Bowl (Cook et al. 1999), and the Southwest drought of 1950-56 (Cook et al. 
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2007), and more recently 2012 where 65.5% of the U.S. experienced moderate to severe 

drought according to the USDM (Heim, 2017).  In the United States, the spatiotemporal 

variations of drought differ geographically due to climate forcing’s unique regional 

characteristics (Ficklin et al. 2015). The West and Southwest have experienced severe, 

more intense, prolonged droughts (Andreadis and Lettenmaier 2006; Ficklin et al. 2015), 

whereas the Eastern and Southeastern regions have not experienced such long-lasting 

deficits (Li et al. 2013; Wang et al. 2010). In the West, increased heat is expected to 

amplify the duration and severity of a drought. The Southeastern region typically 

experiences frequent tropical cyclones and flooding, but internal atmospheric variability 

and projected increased evaporation are likely to enhance drought in these locations (Ford 

and Labosier 2014; Wang et al. 2010; Seager et al. 2009). Moreover, drought variability is 

naturally influenced by teleconnections such as El Niño-Southern Oscillation, in which the 

warm phase (El Niño) promotes increased precipitation in the winter across the Gulf 

Coast, and Southeast and in contrast creates warmer, and drier conditions in Northern and 

Western parts of the U.S. (Trenberth et al. 2014). In comparison, the opposite is true 

during the cold phase of ENSO (La Niña), which normally is associated with drier 

conditions and increased temperatures across the Southeast, and Gulf Coast, and wetter 

conditions in the Northern U.S., and Pacific Coast. The North Atlantic Subtropical High, 

also known as the Bermuda High, further influences the probability of drought during the 

warm season because it promotes increased air temperatures and decreased precipitation 

events when it is displaced inland over the Southeastern US (USDA, 2017). Projected 

warming trends augment the many concerns regarding how an increase in temperature will 

affect droughts’ persistence.  
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Climate extremes such as drought have been the subject of many scientific studies 

to better understand their associated climatic conditions and their impacts. Nonetheless, 

drought trends as compared to the historical record remain contested given notable gaps 

across metrics used to define drought. The IPCC Synthesis Report (2014) attributed 

increased global aridity since the 1950’s to warming trends, i.e., climate change, although 

with low confidence due to difficulties discerning decadal-scale variability from long-term 

trends of drought, as well as regional differences of observed drought trends. Some studies 

have supported the claim that drought trends have been increasing since the 1950’s (Dai 

2011b; Dai, 2013; Vicente Serrano et al. 2010); however, this has been refuted by studies 

that argue that the magnitude of drought changes over time is attributed to methods used to 

estimate potential evapotranspiration (PET) and other climate forcing’s (Sheffield et al. 

2012). Data inconsistencies due to limited availability or access to high quality long-term 

precipitation data, varying baseline periods, and techniques have amplified the 

uncertainties in our understanding of climate extremes such as drought (Alexander 2016; 

Trenberth et al. 2014). While it is widely recognized that drought is invariably linked to 

heat (Vicente-Serrano et al. 2010), other climatic indicators, such as precipitation, soil 

moisture, evapotranspiration, wind speed, cloud cover, and solar radiation, also play 

significant roles in regional drought cycles (Ficklin et al. 2015; Trenberth et al. 2014). 

 Higher air temperatures allow the atmosphere to hold more moisture; therefore, in 

regions such as the Southeast, there is an expected probable increase and intensification of 

rainfall (Wang et al. 2010, Li et al. 2013); however, precipitation variability may mask 

how drought has changed in these locations (Easterling et al. 2007). Consequently, as 

droughts are expected to increase in frequency and severity, there is a growing need to 
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continue monitoring drought to identify salient, and significant trends for improved 

planning measures in the future. The current body of literature seeks to better understand 

climate forcing’s, or the internal regional variability that drive anomalous drying or 

wetting trends. However, anthropogenic forcing’s that may enhance droughts are less 

understood and may alter natural patterns of drought.  

Previous studies examining patterns of drought have relied on simulated datasets of 

various hydro-climatic factors (e.g., soil moisture, runoff) to reconstruct past drought in 

the 20th century (Andreadis and Lettenmaier 2006). Ficklin (2015) tested spatial trends of 

drought using Mann-Kendall trends analysis and found four grouped regions showing 

increasing (upper Midwest, Lousianna, Southeast and Southwest), and four grouped 

regions displaying decreasing trends (New England, Pacific Northwest, upper Great Plains, 

and the Ohio River Valley). While these studies revealed that regional differences were 

driven by local variations in precipitation and temperature patterns, results have been 

limited by technical limitations of multiple regression, including the assumption of 

linearity, estimating multicollinearity, and the inability to determine causality.  

Self-organizing maps are a novel, competitive learning subset of artificial neural 

networks (ANN), requiring unsupervised training of nodes (inputs). SOMs have been an 

exceptionally useful tool in meteorological and atmospheric research (Hewitson and Crane 

2002; Skific and Francis 2012; Sugg and Konrad 2017), and have quickly gained traction 

across a variety of climatological applications (Sheridan and Lee 2011). In the climate 

literature, SOMs have become a popular method for the characterization of the physical 

conditions behind extreme climatic events (Gibson et al. 2017). The appeal of SOMs stem 

from their ability to work with large datasets to derive salient clusters across a 
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multidimensional space, while retaining the original data space continuum (Skific and 

Francis 2012). SOMs are used for pattern detection in data sets that may otherwise be too 

great in the scope of analysis and subject to human error (Kohonen, 1990) and are 

particularly useful for analysis that considers spatial variations across temporal scales 

guided by human expertise (Andrienko et al. 2010).  SOMs also associate separate groups 

with similar or adjacent patterns (Hewitson and Crane 2002).  

To our knowledge, there is no other study that examines the spatiotemporal trends 

of drought using self-organizing maps (SOM). The objective of this study is to observe the 

general trends of drought of the conterminous United States (CONUS) from 1895-2016 to 

identify anomalous drying or wetting patterns and quantify how they have changed over 

time across U.S. regions. To satisfy these objectives, we will be using self-organizing 

maps, a sophisticated and powerful technique used to characterize groups or clusters 

similar (or dissimilar) to each other from large datasets and derive diagnostic inferences 

from such maps. Results documented here will inform future studies exploring drought 

trends by offering a new way to examine geographic patterns associated with 

meteorological drought over the last century. 

Methods 
 
Data 

Data used in this study are derived from the North Carolina Cooperative Institute for 

Climate and Satellites (NCICS). The data consists of monthly observations of county-level 

Palmer Drought Severity Index (PDSI) values from 1895-2016 for the conterminous United 

States. The total number of counties in our data is 3,103 with 1,464 corresponding drought 

observations per county. The PDSI index was chosen as the primary drought metric for this 
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study owing to its prominence as a measure for long-term meteorological drought (Keyantash 

and Dracup 2002), and comprehensive consideration of the availability of atmospheric 

moisture in the water balance model (Palmer, 1965). The PDSI is computed based on local 

climatic conditions, and available data; inputs consist of available water content in the top 

layer of soil, temperature, and precipitation at the monthly interval. The PDSI index can also 

be modified to include potential evapotranspiration using either the Thornthwaite or Penman-

Monteith equation, although the former method has been attributed to overestimating dryness 

(Sheffield et al. 2012). These calculations are used to reconstruct dryness or wetness changes 

over the long-term and can then be standardized to allow for the comparison across regions at 

various timescales.  

There are several limitations to the PDSI that have been addressed in previous papers 

(Alley, 1984; Karl, 1986; Karl et al. 1985). The original formulation of the PDSI index was 

based on climatic conditions in the central United States, which have a semi-arid climate 

unique to the region, therefore widespread applicability requires some extrapolation. For 

instance, the PDSI scale theoretically ranges from -10 (dry) to 10 (wet), but varies depending 

on how PDSI is calculated, thus interpretations of relative wetness or dryness for a given 

PDSI value in one geographical location could hold a different meaning in another (Dai et al. 

2004). Moreover, the PDSI has been criticized for its sensitivity to available water content. 

For example, it does not reflect seasonal differences owing to its inability to account for the 

effect of snow cover and frozen ground (Karl et al. 1985), and for not incorporating a lag 

period between water accumulation and runoff (Alley, 1984).  

Perhaps the most prominent critique of the PDSI has been the arbitrary establishments 

of the start and end period of a drought event, and subjective weighting factors used for 
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standardization (Heim, 2002). Nonetheless, modified variants of the PDSI have been 

developed that address some of these drawbacks, including the self-calibrated PDSI 

(scPDSI). Proposed by Wells et al. (2004), scPDSI extends the index to dynamically 

represent actual local climate characteristics in real-time, thereby improving comparability 

across different regions. Our PDSI algorithm considers daily minimum and maximum 

temperature, and precipitation, as well as available water content (AWC) in the top layer of 

soil. Potential evapotranspiration (PET) was estimated using the Thornthwaite equation, 

which is based on monthly mean surface air temperature, latitude, and month (Thornthwaite, 

1948). The need for a scPDSI and other modified variants of PDSI is beyond the scope of 

this paper, which seeks only to examine the historical spatiotemporal trends of 

meteorological drought in the United States. 

Self-Organizing Maps 

In this study, the SOM was trained with PDSI values on a 3x4 Kohonen array with 

12 resultant nodes. The SOM output shows a spatially coherent representation of patterns 

detected within the input data. We iteratively tested several other array sizes (i.e., [3x3, 

4x4], not shown) to determine the optimal number of nodes that best captured the 

variability of historical patterns and provided spatial coherence across the array, a common 

practice used to assign optimal SOM dimensions (Sheridan and Lee 2011, Hewitson and 

Crane 2002, Kohonen, 2013). In our sensitivity analysis, SOMs with fewer nodes were 

inadequate at capturing all the data’s variability, while larger sized networks presented 

many similar patterns with few discernible differences.  

The unsupervised training process for the SOM begins with what is known as random 

initialization, in which a random monthly PDSI observation from the input data is presented 
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to the network and is forced to join one of the twelve nodes. Because the SOM is 

topologically organized, neighboring nodes are also updated as observations are assigned to 

particular nodes. In this study, a neighborhood radius size of .66 is used. The remaining 

monthly PDSI observations were then presented to the SOM to approximate the first guess, 

or approximate arrangement of patterns across the nodes. Over a series of 100 iterations, the 

weight vector is updated until the best match is found for each monthly PDSI observation 

using Euclidean distance. Patterns in each node are therefore theoretical representations of all 

the best matched observations which resemble the distributions of the raw PDSI data from 

1895-2016.   

After training, spatiotemporal analysis was conducted by mapping the representative 

PDSI vectors to each county in the CONUS for all 12 nodes. Each node contains the monthly 

timestamp for all the best matching observations throughout the study period, which provides 

a valuable way to diagnose whether there are any temporal trends among the patterns. First, 

we calculated the frequency of each pattern as a percentage of total months within the study 

period. This step provided a means of assessing the return periods of each pattern. Second, 

we calculated a persistence metric in each node to determine the duration of each pattern 

relative to its frequency of occurrence. Typically, this criterion is arbitrarily established with 

the drought metric used to quantify severity based on an accumulation of precipitation 

deficits. We defined persistence as the total number of times in which a spatial pattern 

occurred two or more consecutive months in a row, divided by the number of times where 

the node duration was only one month. Following Gibson et al. 2016, this value is a unitless 

number where higher values indicate longer-duration persistence and lower values indicate 

shorter duration trends. In this study, analyses were completed in RStudio (R Core Team 



15 
 

2020) using the Kohonen package (Wehrens and Buydens 2007; Wehrens and Kruisselbrink 

2018); final maps were created using the Maps package (Brecker and Wilks 2018) and 

statistical analyses performed using the modified MK package (Patakamuri S. K., and 

O'Brien, N. 2020).  

As a final statistical measure of these trends, we applied the Mann-Kendall (MK) 

nonparametric trend test to determine the nature of trends from 1895-2016. The MK trend 

test is commonly employed to detect monotonic trends in a time series of climate or 

hydrologic data (Pohlert et al. 2015; Kendall, 1975; Mann, 1945). Time-series data are 

typically limited by their sensitivity to seasonality and other existing covariates, also known 

as serial correlation. Initially the MK test without adjusting for seasonality was performed 

with statistical significance level determined at p ≤ 0.10 for a two-sided test. Observed trends 

appeared promising, but to account for seasonal dependence, we carried out a seasonal 

Mann-Kendall trend test (Hirsch et al. 1982) with statistical significance level remaining the 

same. As a final sensitivity analysis, a modified MK that adjusts for serial correlation using a 

variance correction approach was applied to address potential issues of serial correlation in 

the trend analysis and to ensure the robustness of trend observations (Hamed and Rao 

1998).   

Results 

Fig. 1 presents a 2D topological overview of multidimensional groupings within our 

input PDSI dataset arranged by similarity. The SOMs spatial organization aligns similar 

patterns in proximity to each other, and dissimilar patterns further apart (Hewitson and Crane 

2002) and expresses extremes in each of the four corners of the SOM, with more smooth 
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continuous patterns in between (Sheridan and Lee 2011).The resultant SOM nodes (Fig. 1) 

exhibits a continuum of spatial patterns over time where we see more extreme drought 

intensity beginning at the top left quadrant, and as we transition towards the bottom right, 

more extreme wet trends are clustered together. Persistence of trends (lower right value) 

appears to increase across each row from left to right indicating that across time, overall 

persistence of wet trends were greater than drought conditions (Fig. 1). Notably, there 

appears to be an inverse relationship between pattern frequency (lower left value) and how 

long trends persist (lower right value), where conditions that occurred at a higher frequency 

persisted for shorter durations, and vice versa. Nodes displaying widespread drought patterns 

occurred at a greater frequency but persisted less. In contrast, nodes with above normal 

moisture conditions primarily concentrated across the Great Lakes, the Midwest, the North 

and Southeast, and parts of the upper Great Plains occurred less often but persisted for 

longer. 
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As expected, drought trends are predominantly located in the West and Southwest 

regions, however, drought conditions in the Southeast (A3, B2, B3, C3) and Midwest (A1, 

A2, B1, C1) are also displayed in several maps. Node D1 exhibits above normal wetness in 

the Northeast, Southeast and Midwest, with similar trends displayed in node D3 (Fig. 1). This 

wetting trend occurred at a higher frequency and persisted for longer durations when 

compared to apparent drought conditions in the same locations as seen in nodes A3 and B3. 

Easterling et al. (2007) found that although the contiguous U.S. had experienced an increase 

in temperature, the tendency of drought in the Southeast has been obscured by the coupled 

increase in precipitation variability. In addition, nodes with drier conditions predominantly 

concentrated in the Western portion of the CONUS (B2, C1) were less frequent, but more 
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persistent than other drought patterns. The most frequent of drought patterns is shown in  

node A2, at 10.5%, the drought pattern extends from eastern Texas up into the Ohio Valley. 

Moreover, the most severe PDSI patterns of drought (widespread -3 to -4 values) fall over 

places that were impacted by the 2012 drought.  

Results from the time series analysis provide a more comprehensive explanation of 

observed spatial distributions. In one corner of the SOM (Fig. 1), nodes A1 and B1 show 

widespread extreme drought conditions, however, corresponding plots A1 and B1 in Fig. 2 

reveal that these events occurred relatively infrequently over time and persisted the most 

during the 1950’s and the 1930’s respectively. Similarly, of the nodes displayed in the SOM, 
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C1 was found to be less common over the study period, primarily observed in the 1930s and 

early 1980s. At the other extreme of the SOM continuum, nodes B3, C3, and D3 displaying 

widespread above normal moisture conditions were more prevalent during and after the mid-

1980’s. The organizational structure of the SOM suggests that nodes across the center (row 

2) represent transitional patterns in the continuum between more extreme patterns with 

greater severity (higher absolute values of PDSI) and or spatial extent. For instance, patterns 

of concurrent wet and dry conditions (A2-D2) shown in Fig. 2 are more scattered over the 

study period than widespread drought (A1-C1), and wet patterns (B3-D3). Overall, the 

proportion of frequency was revealed to be homogeneous (between 8 and 10%) across the 

SOM, however, map C2 at 12.7% was the most common pattern.   

 Both Mann-Kendall and the seasonal Mann-Kendall trend tests showed that trends in 

our study were statistically significant (alpha < 0.10). While this non-parametric test is a 

common, widely accepted measure of trends in climatological studies, the novel nature of 

this study required further analysis to ensure robustness of results. From the seasonal MK 

test, we observed a total of 10 statistically significant increasing and decreasing trends (Table 

1). In Fig. 1, PDSI patterns with decreasing drought trends in nodes (D1 and D3) were found 

in the Northeast, Southeast and some of South-Central U.S with decreasing wet trends in the 

Pacific Northwest, Southwest, and South-Central U.S (nodes A2, A3, and C2). Increasing 

trends were found for nodes A1 and B1 that exhibit extreme drying patterns across most of 

the U.S. (Fig. 1) centered over the northern and southern Plains, respectively. Other nodes 

with increasing trends included C1 with moderate to severe drying concentrated in the West 

and parts of the Midwest, whereas B3, and C3 displayed increasing wetting trends over the 

upper Great Plains, Midwest, and Northeast (Fig. 1). After the modified Mann-Kendall test, 
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which accounts for serial correlation, many significant trends across the SOM became 

insignificant apart from node A1 (alpha < .10), which exhibited a significant increasing trend 

over the entire study period (Table 1). These results suggest that neither of the nodes are 

becoming more common over the other with an exception for A1, which tends to persist over 

several consecutive years (thicker bands in Fig. 2) since 1915.  

 

Table 1: Mann Kendall (Tau), Seasonal Mann Kendall (Tau), and Hamed and Rao (1998) 
approach for adjusting for serial correlation in Mann Kendall time-series analysis. A positive 
Tau statistic indicates that a trend is increasing over time. A negative Tau statistic indicates 
that a trend is decreasing over time. Statistical significance level determined at p ≤ 0.10. 

 
Mann 
Kendall 

(Tau) 

2-sided p-
value  

Seasonal 
Mann Kendall 

2-sided p-
value  

Mann Kendall 

(Tau) Variance 
Correction 
Approach 

p-
value  

A3 -0.05 0.019 -0.0511 0.018 -0.018741 0.394 

B3 0.0463 0.030 0.0469 0.031 .014527 0.634 

C3 0.0694 0.001 0.0698 0.001 0.026811 0.312 

D4 -0.0898 0.0000 -0.0907 0.0000 -.03349843 0.215 

A2 -0.0797 0.0001 -0.0803 0.0002 -0.34983 0.161 

B2  -0.0221 0.300 -0.0222 0.303 -0.009703 0.6608 

C2 -0.0677 0.001 -0.0686 0.001 -0.02449 0.4098 
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D2  0.0157 0.461  0.0157 0.466 0.005887 0.7994 

A1 0.103 0.0000 0.104 0.0000 0.0466 0.075 

B1  0.0813 .0001 0.082 0.0001 0.03166 0.227 

C1  0.0416 0.051  0.042 0.051 0.016382 0.378 

D1 -0.0567 0.007 -0.0572 0.008 0.020497 0.4737 

 
Discussion  

In this study we examined the large-scale spatiotemporal patterns of meteorological 

drought over the CONUS and described how they have changed over time using self-

organizing maps. Our findings revealed no statistically significant changes in moisture across 

most SOM patterns. However, our time-series analysis showed increased persistence of wet 

trends over the latter half of the 20th century, primarily concentrated in the Northeast, 

Midwest, and upper Great Plains. Droughts were found to generally occur at a higher 

frequency but did not persist for long durations. In contrast, wet trends occurred slightly less 

frequently, but persisted for longer when they did occur. We also observed a minor 

statistically significant increase of moderate to severe drought conditions across the 

Southwest, the Great Plains and Southeast.  

After performing the modified MK test to account for serial correlation, the only 

significant increasing trend identified is expressed in node A1, which resembles drought 

conditions of the 1950-57 drought episode that affected areas across the U.S, from the West 

coast to the Mississippi Valley. This finding does not necessarily imply that future droughts 
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will share identical characteristics (severity, intensity, spatial extent) of the 1950s, but instead 

suggests this pattern of drought is likely to manifest more frequently in these regions. Heim 

(2017) compared regional 1998-2014 droughts across the U.S. to historical national-scale 

droughts of the 1930’s and 1950’s. His analysis revealed that the 1950s drought was the most 

severe regarding areas characterized by long-duration dryness, whereas the 1998-2014 

drought episodes expressed more frequent short-duration trends. Moreover, as compared to 

the 1930s and 1950s the 1998-2014 drought episodes were found to be much warmer and 

wetter, i.e., more regions were experiencing wet conditions concurrently with dry conditions 

in others, and had persisted the longest, which is strikingly consistent with patterns displayed 

in nodes B3, C1, and C3 (Fig. 1).  

Previous assessments of historical drought trends have described a sensitivity of the 

significance of trends on temporal scaling and regional variability (Alexander 2016; Soulé 

1993; Soulé and Yin 1995). Soulé (1993) compared three discrete 30-year intervals over a 

90-year period and found an inverse relationship of mean moisture conditions between 

periods. During the early 30-year period, regions such as the Great Plains and Midwest 

displayed below-normal moisture conditions. When compared to middle and later 30-year 

intervals, these same regions exhibited above-normal moisture conditions. Yet, Soulé (1993) 

found no significant differences of mean moisture conditions in over 50% of climatic 

divisions for all 30-year interval comparisons. Alexander (2016) further elaborates on the 

challenges faced by the IPCC when managing existing inhomogeneities on monthly time-

series data and attempting to delineate climatic extremes. As such, indications of significant 

changes to moisture are subject to the chosen temporal and spatial scale of analysis. The 

prevalence of statistically insignificant trends in our study could also be attributed to both the 
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temporal and geographic scale of analysis applied. Statistically significant increasing drought 

patterns exhibited in node A1 indicates that severe drought conditions will be more likely in 

these regions, but the greater persistence of wet conditions revealed by our time-series 

analysis suggests that both may be valid but are not captured in our sample.  

Future work could expand on our findings by verifying the significance of increasing 

or decreasing trends at regional to local scales, as well as applying the SOM to the self-

calibrated PDSI to aid a more refined understanding of current drying trends in these 

locations. Future studies seeking to understand seasonal differences of drought could then 

extract linkages between dates of occurrence and the synoptic conditions associated with 

common drought patterns. Differences in SOMs based on other popular drought metrics such 

as the Standardized Precipitation Index (SPI) or the Standardized Evapotranspiration Index 

(SPEI) can provide additional insight using differing perspectives of drought and comparing 

geographic similarities of drying and wetting trends. The SPI is recommended as the best 

measure of drought for its simplicity (Hayes et al. 2011), and the SPEI further extends this 

metric to calculate potential evapotranspiration (PET), a known driver of drought. The 

vacillation regarding optimal formulation of PET is evident across the literature and more 

research is necessary to capture the complexities that lead to the development of drought 

(Seneviratne 2012).  

Strengths and Limitations 

The spatial distribution of trends documented in this study qualitatively concur with 

previously observed general drying and wetting trends in the United States (Andreadis and 

Lettenmaier 2006; Easterling et al. 2007; Ficklin et al. 2015; Soulé and Yin 1995). Direct 
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comparability is limited, however, due to differences of timescales between studies, as well 

as climate variables and metrics applied to characterize trends, e.g., measures of soil moisture 

conditions versus long-term precipitation data.Our findings coincide with other studies where 

we see that a greater number of wetting trends predominantly took place after 1970, of which 

are largely concentrated across the Pacific Northwest, Midwest, upper Great Plains, and the 

Northeast portions of the U.S (Andreadis and Lettenmaier 2006; Balling and Goodrich 2011; 

Groisman et al. 2004; Ficklin et al. 2015; Soulé 1993). Extreme drying trends concentrated in 

the West, Southwest, Central plains, and the Southeast demonstrated a statistically significant 

increase, suggesting that an increase of precipitation frequency across much of the U.S. may 

be outweighed by an increase in evapotranspiration caused by temperatures in these 

locations.  

Results described in this study should not be used to support any claims of causality 

as this paper is observational in nature, focusing only on historical meteorological drought 

trends. It should also be noted that our PDSI calculation may have influenced the relative 

estimate of wetness or dryness captured in the SOM, as the Thornthwaite method was 

applied instead of the more physically based Penman-Monteith equation, which may mean 

that the severity of drying trends described here could be exaggerated (Sheffield et al. 2012). 

Even so, because the Penman-Monteith method is more physically realistic, it also requires 

more complex inputs; and previous work has shown that estimation of PET using either 

method is quite similar in terms of identifying extreme drying or wetting trends (Dai 2011a; 

van der Schrier et al. 2011). Despite these differences, our results revealed notable wetting 

trends in concurrence with extreme drying trends, suggesting that replication of the analysis 
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using the Penman-Monteith method would produce similar results. Nonetheless, testing these 

differences is necessary to confirm this, and further strengthen findings described here.   

 In addition, our subjective persistence criteria may have overestimated or 

underestimated the duration of overall trends. The PDSI has a lag period of about 12-18 

months thus cannot capture the effect of snowmelt and runoff. In turn, this limits our ability 

to quantify seasonal changes that precede or follow extreme drying or wetting patterns. 

Seasonal influences on drought have been shown to vary regionally and can be further linked 

to atmospheric and oceanic influences such as warm-phase (El-Niño) and cold-phase (La 

Niña) teleconnections (Ford and Labosier 2014).  

Conclusion 

Global increases in temperature and precipitation variability have been well 

documented (IPCC, 2007, 2014; Dai 2013; Alexander et al. 2006; Groisman et al. 2004; 

Groisman et al. 2008; Pal et al. 2013) however, the extent to which such climatic shifts will 

exacerbate extremes in the U.S. remain somewhat unclear given regional drought variability. 

In addition, because of limited access to high quality long-term climatic datasets, and 

divergent findings proposed in the drought literature (Dai et al. 2004, 2011a; Sheffield et al. 

2012), a notable amount of uncertainty surrounding future trends continues to exist 

(Trenberth et al. 2014; Seneviratne 2012).  

Our findings showed that self-organizing maps can be successfully applied to a trend 

analysis of historical drying and wetting patterns. Our time-series analysis showed that the 

occurrence of patterns was evenly distributed, but patterns of greater persistence were 

revealed to be wet conditions. Moreover, the only statistically significant trend increasing 
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trend was related to drought, suggesting that both conditions (increased drought and 

intensified precipitation) are occurring, but the drivers behind these trends remain 

ambiguous. Results further corroborate the notion that drought is increasingly region-specific 

and should be observed exclusively at the regional scale to account for the unique forcing’s 

influencing trends (Ficklin et al. 2015).  
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